Category Archives: AAAV

Japanese Coming California For Amphibious Training

According to AP, Japanese troops will converge on California’s southern coast in the next two weeks as part of a military exercise with U.S. troops aimed at improving that country’s amphibious attack abilities.

China asked the United States and Japan to cancel the drill, scheduled to begin Tuesday, Japan’s Kyodo News service reported, citing unnamed Japanese government sources. The Japanese Defense and Foreign Ministries would not confirm whether China had made any request but said they are going ahead with the exercises. In regard to the drill itself, Foreign Ministry spokesman Hong Lei said: “We hope the relevant sides can focus on peace and stability in this region, and do more to contribute to mutual trust and regional peace and stability.”

U.S. military officials said strengthening Japan’s amphibious capabilities is vital as the U.S. focuses more attention on developing an Asia-Pacific strategy amid ongoing U.S. Defense Department budget cuts. The region has been roiled by tensions due to North Korean long-range rocket and nuclear tests and maritime territorial disputes between China and its neighbors.

The drill comes just days after Chinese President Xi Jinping’s visit with President Barack Obama at an estate in the nearby California desert, at which the two discussed topics including the Pacific region’s mounting tensions. China recently asserted its dominance over what they call Diaoyutai, and Japan calls the Senkaku Islands, by sending government ships into Japanese territorial waters in April. China has said it is only safeguarding its sovereignty. The uninhabited islands are controlled by Japan but also claimed by China. Japan’s nationalization of the islands in September triggered violent protests across China. Beijing has increasingly patrolled the area, prompting Japan to dispatch fighter jets to monitor Chinese aircraft, raising the risk of missteps that could trigger a clash.

Japan’s navy is among the world’s best-equipped and best-trained, but its skills at storming beaches and other amphibious capabilities have been weak since its national defense force formed in the 1950s. Largely in response to China’s growing military might — including the acquisition of its first aircraft carrier last year — Japan has been buying amphibious landing craft and beefing up training for potential conflicts in or around small islands. Japan is also repositioning its troops to better monitor and defend its southern borders and sea lanes.

The San Diego exercise marks the first time the country’s troops will travel aboard warships so far from home, and members of Japanese air, sea and ground forces will train together with the U.S. military, said Cmdr. Takashi Inoue, spokesman for the Japanese Self-Defense Force.

Japan is sending three warships, about 1,000 service members and about four combat helicopters to the so-called Dawn Blitz exercise, Inoue said. Forces from New Zealand and Canada also will take part. The troops will practice an amphibious assault on San Clemente Island, a naval training ground off San Diego’s coast, and also conduct a mock beach invasion at Marine Corps Base Camp Pendleton.

Tokyo’s move to boost its amphibious training is “hugely significant” since the United States is obligated to defend Japanese territory under a post-World War II security pact, said Kerry Gershaneck of the Pacific Forum-Center for Strategic & International Studies.

Hovercraft

Hovercraft

An air-cushion vehicle (ACV) or hovercraft can travel over land or water supported by a cushion of air ejected downwards against the surface below it. In principle a hovercraft can travel over any sufficiently smooth surface, solid, liquid, mixed, or anything in between. Large hovercraft, riding on an air-cushion contained by skirts several meters tall, can deal with obstacles 1 to 2 meters in height. The smallest personal hovercraft are nimble enough to follow some rolling of the terrain.

One of the benefits of this type of amphibious craft is the possibility of making them large — the British-built SR.N4 Mk.3 ferries could carry dozens of vehicles. ACVs have a high speed over water (an SR.N4 Mk.1 could do 83 knots (95 mph or 154 km/h)) and can make the transition between land and water at speed — unlike most wheeled or tracked amphibians. Drawbacks are high fuel consumption and noise levels.

For some military applications wheeled and tracked amphibious vehicles are slowly being supplanted by air-cushioned landing craft. The hovercraft’s ability to distribute its laden weight evenly across the surface below it makes it well suited to the role of amphibious landing craft. The US Navy LCAC can take troops and materials (if necessary an M1 Abrams tank) from ship to shore and can access more than 70% of the world’s coastline, as opposed to conventional landing craft, that have only about 17% of that coastline available to them for landing.

Deep fording

Deep fording

Some military vehicles are capable of “wading” using waterproof screens to keep the upper hull dry. In World War II the tanks following the Sherman DDs were given waterproofed hulls and trunking was fixed to the engine intakes and exhausts to allow them to come ashore from landing craft in shallow water. The Germans gave their Tiger tank a long snorkel, essentially a long tube on the commander’s hatch that allowed it to wade through four metres of water.

The Leopard 2 tank can use a series of rings which to create a long tube. This tube is then fitted to the crew commander’s hatch and provides air and an escape route for the crew. The height of the tube is limited to around three meters.

The Russian T-90 tank is also able to perform deep fording operations. The Russian snorkel is only a few inches round and does not provide a crew escape path, but it can be stored on the tank.

Tracked

Tracked
Unarmored

The M29 Weasel (Studebaker Weasel), whilst originally designed as a snow vehicle, operated successfully in amphibious role by the addition of front and rear floats. The basic vehicle will float but its bow is square so the additional floats add stability and load carrying capacity.
Armored
Two U.S. Marine Corps AAV-7s emerge from the surf

Among tracked armored vehicles with amphibious capabilities include those that are intended for use in amphibious assault. The United States started developing a long line of LVT (Landing Vehicle Tracked) designs from ca. 1940.

Many tracked armored vehicles that are primarily intended for land-use, such as armoured fighting vehicles and armoured personnel carriers nevertheless also have amphibious ability, tactically useful inland, reducing dependence on destroyable and easily-targeted bridges. To provide motive power, they use their tracks, sometimes with added propeller or water jets. As long as the opposite bank has a shallow enough slope for the vehicle to climb out within a few miles, they can cross rivers and water obstacles. American examples are the M113 Armored Personnel Carrier and the M2 Bradley. Soviet examples are the PT-76 amphibious tank, and the BTR-50 and MT-LB APCs based on its chassis.

Some heavy tanks have an amphibious mode in which a fabric skirt is needed to add buoyancy. The Sherman DD tank used in the D-Day invasion had this setup. When in water the waterproof float screen was raised and propellers deployed. The M2 and M3 Bradleys also need such a skirt.
Tanks
1944 Sherman DD (Duplex Drive) amphibious tank with float screens

At the end of World War I a Mark IX tank had airdrums attached to the side and was tested as an Amphibious vehicle.

In World War II the British further developed amphibious tanks. The Crusader was trialled with two pontoons that could be attached or removed, the tracks driving the tank in the water. The “Medium Tank A/T 1” was a tank with inbuilt buoyancy some 24 ft long and 11 ft tall. The Valentine, then the M4 Medium tank were made amphibious with the addition of a rubberized canvas screen to provide additional buoyancy and propellers driven by the main engine to give propulsion. These were DD tanks (from “Duplex Drive”) and the Sherman DD was used on D-Day to provide close fire support on the beaches during the initial landings. The Sherman DD could not fire when afloat as the buoyancy screen was higher than the gun. A number swamped and sank in the operation, due to rough weather in the English Channel (with some tanks having been launched too far out), and to turning in the current to converge on a specific point on the battlefield, which allowed waves to breach over the screens. Those making it ashore, however, provided essential fire support in the first critical hours.

Before World War II, The Soviets produced light amphibious tanks called T-37 and T-38. A third serial model, T-40, started production after the beginning of the war. A 14 ton tank, PT-1 was created, but was not mass-produced. In addition, an attempt was made to attach pontoons to T-26. While successful, the project was closed due to the high vulnerability and unwieldiness of the construction.
Polish PT-76 amphibious light tank coming out of the water

Some light tanks such as the PT-76 are amphibious, typically being propelled in the water by hydrojets or by their tracks. In 1969, the U.S. Army rushed the new M551 Sheridan to Vietnam. This 17 ton light tank was built with an aluminium hull, steel turret and gun (although the 152 mm gun was called a “launcher” at the time), and could swim across bodies of water. The M551 upon arrival in Vietnam began replacing the M48A3 Patton in all cavalry squadrons, leaving only the M48A3 in the U.S. Army’s three armored battalions in Vietnam, the 1/77th, 1/69th, and the 2/34th Armor. The Sheridan needed no modifications for river crossings, crewmen simply raised the cloth sides that were tucked inside rubber tubes along the hull’s upper edges, raised the driver’s front shield which had an acrylic glass window, the driver turned on his bilge pumps, shifted his transmission lever to water operations and the Sheridan entered the water. For newly arrived Sheridans, this might work as engineered. For “war weary” M551s, the driver’s window was often “yellowed” and/or cracked as to obscure his vision, and the rubber tubes that contained the rolled up side sleeves were often cracked and/or frozen into place. The Sheridan could still cross a body of water, but like its swimming cousin, the M113 APC (Armoured Personnel Carrier, also built of aluminium) the river had to be narrow, less than 100 yards (100 m). In all cases, the bilge pumps had to be working properly, and even then by the time the Sheridan or the APC reached the other side, water would often fill the insides up to their armoured roofs, spilling through the hatches’ cracks and emptying onto the earth once safely ashore. Often a fold down trim vane is erected to stop water washing over the bow of the tank and thus reducing the risk of the vehicle being swamped via the driver’s hatch.
Multi-unit
Hagglunds Bv206 in US military service as M-973 SUSV (small unit support vehicle).

The unique capability that distinguishes multi-unit vehicles from single unit ones, is the ability to help each other. According to a 1999 article in Military Parade magazine, multi-unit, all-terrain transport vehicles were first proposed by the British in 1913, and by the 1950s, over 40 types of articulated tracked vehicles (ATVs) were in production. The articulated tracked concept is chosen primarily for its combination of high maneuverability, cross-country abilities, and remarkable load-carrying capacity. In some cases the design is made amphibious, giving them all-terrain capability in the truest sense. Usually the front unit houses at least the engine, gearboxes, fuel tank(s) and the driver’s compartment, and perhaps there is some space left for cargo or passengers, whereas the rear unit is the primary load carrier.

Examples of this concept are the Russian Vityaz, Swedish Volvo Bv202 and Hagglunds Bv206 designs, and the Bronco ATTC of Singapore.

A highly specialised development is the Arktos expedition and evacuation craft, that uses a linkage with two joints to connect the two units, as well as fitting each unit with its own engine, to give each unit enhanced independence of movement.

Wheeled

Wheeled
Unarmored
ATVs
M Amphibious ATV
Land Tamer amphibious 8×8 remote access vehicle

Amongst the smallest non air-cushioned amphibious vehicles are amphibious ATVs (all-terrain vehicles). These saw significant popularity in North America during the 1960s and early 70s. Typically an amphibious ATV (AATV) is a small, lightweight, off-highway vehicle, constructed from an integral hard plastic or fibreglass bodytub, fitted with six (sometimes eight) driven wheels, with low pressure, balloon tires. With no suspension (other than what the tires offer) and no steering wheels, directional control is accomplished through skid-steering – just as on a tracked vehicle – either by braking the wheels on the side where you want to turn, or by applying more throttle to the wheels on the opposite side. Most contemporary designs use garden tractor type engines, that will provide roughly 25 mph top speed on land.

Constructed this way, an AATV will float with ample freeboard and is capable of traversing swamps, ponds and streams as well as dry land. On land these units have high grip and great off-road ability, that can be further enhanced with an optional set of tracks that can be mounted directly onto the wheels. Although the spinning action of the tires is enough to propel the vehicle through the water – albeit slowly – outboard motors can be added for extended water use.

In October 2013, Gibbs Amphibians introduced the long-awaited Quadski, the first amphibious vehicle capable of traveling 45 mph on land or water. The Quadski was developed using Gibbs’ High Speed Amphibian technology, which Gibbs originally developed for the Aquada, an amphibious car, which the company has still not produced because of regulatory issues.
Cars
VW Schwimmwagen in June 1944
Amphicar

Amphibious automobiles have been conceived from ca. 1900, however the Second World War significantly stimulated their development. Two of the most significant amphibious cars to date were developed during World War II. The most proliferous was the German Schwimmwagen, a small jeep-like 4×4 vehicle designed by the Porsche engineering firm in 1942 and widely used in World War II. The amphibious bodywork was designed by Erwin Komenda, the firm’s body construction designer, using the engine and drive train of the Kübelwagen. An amphibious version of the Willys MB jeep, the Ford GPA or ‘Seep’ (short for Sea jeep) was developed during World War II as well. A specially modified GPA, called Half-Safe, was driven and sailed around the world by Australian Ben Carlin in the 1950s.

One of the most capable post-war amphibious off-roaders was the German Amphi-Ranger, that featured a hull made of seawater-resistant AlMg2 aluminium alloy. Extensively engineered, this costly vehicle was proven seaworthy at a Gale force 10 storm off the North Sea coast (Pohl, 1998). Only about 100 were built – those who own one have found it capable of crossing the English Channel almost effortlessly.

Purely recreational amphibian cars include the 1960s Amphicar and the contemporary Gibbs Aquada. With almost 4.000 pieces built, the Amphicar is still the most successfully produced civilian amphibious car to date. The Gibbs Aquada stands out due to its capability of high speed planing on water. Gibbs built a couple dozen Aquadas in the early 2000s after it was developed by a team assembled by founder Alan Gibbs before the company’s engine supplier, Rover, was unable to continue providing engines. Gibbs and new partner Neil Jenkins reconstituted the company and are now seeking U.S. regulatory approval for the Aquada Other amphibious cars include the US Hydra Spyder.

Cycles
An amphibious cycle is a human-powered vehicle capable of operation on both land and water. Saidullah’s Bicycle uses four rectangular air filled floats for buoyancy, and is propelled using two fan blades which are attached to the spokes. Moraga’s Cyclo Amphibious uses a simple tricycle frame to support three floaters which provide both the floatation and thrust. The wings on the powered wheels propel the vehicle in a similar way to a paddle wheel.

The SBK Engineering Shuttle-Bike consists of 2 inflatable floats with straps that allow the carrying of a bicycle with passenger. The ensemble, when deflated, fits in a backpack for carrying by the cyclist.

Several amphibious cycles have been created by engineering students as university projects.

Amphibious buses are employed in some locations as a tourist attraction. A recent design is the AmphiCoach GTS-1.

With more than 20,000 units produced, the DUKW was the most successful amphibious truck of World War II. This 31-foot (9.4 m) 6×6 truck was used to establish and supply beachheads. It was designed as a wartime project by Sparkman & Stephens, a yacht design firm who also designed the hull for the Ford GPA ‘Seep’. During the war, Germany produced the Landwasserschlepper. In the 1950s, the Soviets developed the GAZ 46, BAV 485, and PTS.

During the Vietnam War, the US Army used the amphibious articulated Gama Goat and the larger M520 Goer truck-series to move supplies through the canals and rice paddies of Southeast Asia. The latter was based on a 1950s civil construction vehicle and became the US Army’s standard heavy tactical truck before its replacement by the HEMTT. Although the vehicles’ wheels were mounted without suspension or steering action, and land speeds over 20 mph were ill-advised, its articulated design provided it with good maneuverability and helped it to keep all four wheels firmly in touch with uneven ground. Coupled with its amphibious capability, in the Vietnam War, the M520 Goer developed a reputation of being able to go where other trucks could not.

For taking vehicles and supplies onto the beaches the US used the 1950s designed LARC-V and the huge LARC-LX which could carry 60 tons of cargo.

The British Army used the 6×6 wheeled Alvis Stalwart as their amphibious cargo carrier. In the water it was driven by vectored thrust water-jet propulsion units at about 6 knots.

The M3 Amphibious Rig can be used as a ferry or as a floating bridge for trucks and heavy combat vehicles.

Gibbs has also developed other types of fast amphibians including the Phibian, a 30-foot amphibian that is aimed at first responder market, and the Humdinga, a 21-foot amphibian that is capable of traversing extreme terrain.
Armored
BTR-80s coming ashore, engine snorkels and waterjet deployed

Many modern military vehicles, ranging from light wheeled command and reconnaissance vehicles, through armoured personnel carriers (APCs) and tanks, are manufactured with amphibious capabilities.

The French VBL is a compact, lightly armored 4×4 all-terrain vehicle that is fully amphibious and can swim at 5.4 km/h. The VAB is a French fully amphibious APC, powered in the water by two water jets, mounted one on either side of the rear hull (see detail picture above). It entered service in 1976 and around 5000 were produced in many configurations.

During the Cold War the Soviet bloc states developed a number of amphibious APCs, fighting vehicles and tanks, both wheeled and tracked. Most of the vehicles the Soviets designed were amphibious, or could ford deep water. Wheeled examples are the BRDM-1 and BRDM-2 4×4 armored scout cars, as well as the BTR-60, BTR-70, BTR-80 and BTR-94 8×8 APCs and the BTR-90 infantry fighting vehicle.

History of amphibious Vehicle

History of amphibious Vehicle
Alligator tug Bonnechere, 1907
LVT ‘Buffalos’ taking Canadian troops across the Scheldt in 1944

Some of the earliest known amphibious vehicles were amphibious carriages, the invention of which is credited to the notorious Neapolitan Prince Raimondo di Sangro of Sansevero (ca. 1750[dead link]) or Sir Samuel Bentham (1781).

The first known self-propelled amphibious vehicle, a steam-powered wheeled dredging barge, named the Orukter Amphibolos, was conceived and built by United States inventor Oliver Evans in 1805, although it is disputed to have successfully travelled over land or water under its own steam.

Gail Borden, better known for condensed milk, designed and tested a sail powered wagon in 1849. On testing it reportedly tipped over 50 feet from shore, from an apparent lack of ballast to counteract the force of the wind in the sail.

In the 1870s, logging companies in eastern Canada and the northern United States developed an steam-powered amphibious tug called an “Alligator” which could cross between lakes and rivers. The most successful Alligator tugs were produced by the firm of West and Peachey in Simcoe, Ontario.
A US DUKW amphibious assault vehicle converted for tourist use

Until the late 1920s the efforts to unify a boat and an automobile mostly came down to simply putting wheels and axles on a boat hull, or getting a rolling chassis to float by blending a boat-like hull with the car’s frame. One of the first reasonably well documented cases was the 1905 amphibious petrol-powered carriage of T. Richmond (Jessup, Iowa, USA). Just like the world’s first petrol-powered automobile (1885, Carl Benz) it was a three-wheeler. The single front wheel provided direction, both on land and in the water. A three-cylinder petrol combustion-engine powered the oversized rear wheels. In order to get the wheels to provide propulsion in the water, fins or buckets would be attached to the rear wheel spokes. Remarkably the boat-like hull was one of the first integral bodies ever used on a car.

Since the 1920s many diverse amphibious vehicles designs have been created for a broad range of applications, including recreation, expeditions, search & rescue, and military, leading to a myriad of concepts and variants. In some of them the amphibious capabilities are central to their purpose, whereas in others they are only an expansion to what has remained primarily a watercraft or a land vehicle. The design that came together with all the features needed for a practical all terrain amphibious vehicle was by Peter Prell of New Jersey. His design, unlike others, could operate not only on rivers and lakes but the sea and did not require firm ground to enter or exit the water. It combined a boat-like hull with tank-like tracks. In 1931 he tested a scaled down version of his invention.

Recently, Gibbs Amphibians has developed a new type of amphibian, one capable of high speeds on both land and water. The vehicles use a patented hydraulic system to raise the wheels into the wheel wells, allowing the vehicles to plane on water. The vehicles can transition between land and water modes in about five seconds. The first Gibbs fast amphibian is the Quadski, introduced in October 2012. It went on sale in January 2013.

General technical notes

General technical notes
Propeller on a French VAB
A Land Rover with inflatable floats to create a vehicle that will swim much like an improvised raft

Apart from the distinction in sizes mentioned above, two main categories of amphibious vehicle are immediately apparent: those that travel on an air-cushion (Hovercraft) and those that don’t. Amongst the latter, many designs were prompted by the desire to expand the off-road capabilities of land-vehicles to an “all-terrain” ability, in some cases not only focused on creating a transport that will work on land and water, but also on intermediates like ice, snow, mud, marsh, swamp etc. This explains why many designs use tracks in addition to or instead of wheels, and in some cases even resort to articulated body configurations or other unconventional designs such as screw-propelled vehicles which use auger-like barrels which propel a vehicle through muddy terrain with a twisting motion.,

Most land vehicles – even lightly armored ones – can be made amphibious simply by providing them with a waterproof hull and perhaps a propeller. This is possible as a vehicle’s displacement is usually greater than its weight, and thus will float. Heavily armored vehicles however sometimes have a density greater than water (their weight in kilograms exceeds their volume in litres), and will need additional buoyancy measures. These can take the form of inflatable floatation devices, much like the sides of a rubber dinghy, or a waterproof fabric skirt raised from the top perimeter of the vehicle.

For propulsion in or on the water some vehicles simply make do by spinning their wheels or tracks, while others can power their way forward more effectively using (additional) screw propeller(s) or water jet(s). Most amphibians will work only as a displacement hull when in the water – only a small number of designs have the capability to raise out of the water when speed is gained, to achieve high velocity hydroplaning, skimming over the water surface like speedboats.

amphibious vehicle

An amphibious vehicle (or simply amphibian), is a vehicle that is a means of transport, viable on land as well as on (or under) water. Amphibious vehicles include amphibious bicycles, ATVs, cars, buses, trucks, military vehicles, and hovercraft.

Classic landing craft are not amphibious vehicles as they don’t offer any real land transportation at all, although they are part of amphibious assault. Ground effect vehicles, such as Ekranoplans, will likely crash on any but the flattest of landmasses so are also not considered to be amphibious vehicles.
A LARC-V 5-ton U.S. amphibious cargo vehicle

Variants

Variants
Personnel variant

The EFVP1 with a three-man crew would conduct the signature mission of the United States Marine Corps, expeditionary maneuver warfare from seabases by initiating amphibious operations from 20–25 miles over-the-horizon and transporting 17 combat-equipped Marines to inland objectives. The fully armored, tracked combat vehicle would have provided lethal firepower to disembarked or mechanized infantry with its own fully stabilized MK46 weapon station with the 30 mm cannon and 7.62mm machine-gun.
Command variant
EFVC1

The EFVC1 provided the same survival and mobility capabilities found in the EFVP1. The EFVC1 would have been employed as a tactical command post for maneuver unit commanders at the battalion and regimental level. The EFVC1 would have provided the supported commander and selected staff with the ability to communicate, via on-board communications, with senior, adjacent, and subordinate maneuver units. The EFVC1 is armed with only a 7.62mm machine gun.

Design

Design

The EFV, designed by General Dynamics Land Systems, is an amphibious armored tracked vehicle with an aluminum hull. The engine is a custom MTU Friedrichshafen diesel (MT883) with two modes of operation; a high power mode for planing over the sea, and a low power mode for land travel. It has a crew of three and can transport 17 Marines and their equipment. The EFV is the first heavy tactical vehicle with a space frame structure.

The hull has a hydraulically actuated bow flap to aid planing with a maximum waterborne speed of 46 kilometres per hour (29 mph; 25 kn). Shrouded Honeywell waterjet propulsors are integrated into each side of the hull, which create over 2,800 horsepower. It is also outfitted with hydraulically actuated chines to cover the tracks while in seafaring mode. The rear loading ramp is not able to open while the vehicle is afloat, typical of other swimming military ground vehicles.

The vehicle uses an Ethernet network connected by the Tactical Switch Router, based on the COTS DuraMAR Mobile IP router for its internal and external communications.
Armament

The electronically powered two-man MK46 turret on the personnel variant accommodates the commander on the right and gunner on the left, a fire control system, and the main and coaxial weapons.

The standard version has a Mk44 Bushmaster II 30 mm cannon, which fires up to 250 rounds per minute with single, burst, and fully automatic capabilities up to 2,000 metres (2,200 yd) in all weather conditions. A general purpose M240 7.62 mm machine gun with 600 rounds of ready-to-use ammunition is mounted coaxially with the main gun.
Countermeasures
EFVP1 engineering prototype undergoing shock testing

The EFV is fitted with composite armor, mine-blast protection, and a nuclear, biological and chemical defense system. The aluminum hull has caused some concern due to protection issues. However, aluminum hulls have been used for decades in military ground vehicles and watercraft.

In June 2007 members of the House Armed Services Subcommittee on Seapower and Expeditionary Forces sent a letter to the Commandant of the Marine Corps urging that the EFV be redesigned to give troops better protection against roadside bombs. The Marines have suggested that underbelly armor appliqué could be applied after the EFVs come ashore and before they encounter IEDs. The limited protection the EFV offers is an improvement on that offered by the AAV so the replacement is an advantage, given the current doctrine of using landing craft for land patrols.

However, tests in January and February 2010 at Aberdeen Test Center demonstrated that the EFV offers blast protection equal to a category-2 Mine Resistant Ambush Protected vehicle, including two simulated improvised explosive devices under its belly and tracks. Tests also show that it has superior protection from direct and indirect fire. The flat hull, which has endured persistent criticism for not being the more blast-resistant V-shape, is necessary for the EFV to plane across the surface of the water and reach its high speed, while dealing with sea states of Category 4.

On 13 October 2010 the Navy awarded M Cubed Technologies a contract to develop new armor for the EFV to offer better protection and lighter weight.
Mobility

Given the increasing ranges of shore launched anti-ship missiles, the EFV’s 25 nautical miles (29 mi; 46 km) range for amphibious landing may no longer provide the anticipated protection predicted for an over the horizon launch. The U.S. Navy has been reconsidering the over the horizon approach, and is considering 10–18 miles appropriate for amphibious launches. This shift in doctrine has made the EFV’s high water speeds less necessary. The EFV’s need for high water speed has resulted in an engine that is 1,200 hp more powerful than the M1 Abrams, even though the EFV weighs far less.